
VŠB – Technická univerzita Ostrava
Fakulta elektrotechniky a informatiky

Katedra informatiky

Absolvování individuální odborné
praxe

Individual Professional Practice in
Company

2020 Marek Hanuš









Rád bych poděkoval společnosti ATLAS consulting spol. s r.o. za to, že mi umožnila vykonání
odborné praxe. Dále bych chtěl poděkovat kolegům z Data Science týmu, především Bc. Jakubovi
Kólovi, vedoucímu projektu Ing. Martinovi Teleckému a svému nadřízenému Mgr. Bc. Tomáši
Řehákovi za cenné rady při zpracovávání úkolů, trpělivost a vytvoření přátelského kolektivu.
Také děkuji svému vedoucímu práce doc. Ing. Radimu Bačovi, Ph.D.



Abstrakt

Tato bakalářská práce popisuje činnost vykonanou během odborné praxe ve společnosti ATLAS
consulting spol. s r.o., která se zabývá vývojem právních a manažerských informačních systémů.
Hlavní náplní praxe bylo vyvinout služby pro získání, zpracování a komparaci dat do nové
aplikace HLÍDAČ OCHRANNÝCH ZNÁMEK. Součástí tohoto úkolu bylo nutné navrhnout
vhodné workflow získávání dat, databázové struktury, implementovat služby a spravovat stabilní
serverové prostředí produkční aplikace.

Klíčová slova: ATLAS consulting spol. s r.o.; bakalářská praxe; ochranné známky; Python;
SQL databáze; NoSQL databáze; analytika; strojové učení; zpracování dat; webová aplikace;
kontejnerizace; virtualizace; DevOps

Abstract

This thesis describes the work performed during internship at ATLAS consulting spol. s r.o.,
a software development company focused on legal and management information systems. The main
scope of practice has been to develop services for obtain, process and compare data for new appli-
cation HLÍDAČ OCHRANNÝCH ZNÁMEK. Part of this task was necessary to create workflow
to obtain data, design database structures, implement services and maintain stable server envi-
ronment of production application.

Keywords: ATLAS consulting spol. s r.o.; bachelor practice; trademarks; Python; SQL
databases; NoSQL databases; analytics; machine learning; data processing; web application;
containerization; virtualization; DevOps



Obsah

Seznam použitých zkratek a symbolů 9

Seznam obrázků 10

Seznam tabulek 11

Seznam výpisů zdrojového kódu 12

1 Úvod 13

2 Společnost ATLAS consulting spol. s r.o. 14
2.1 Pracovní zařazení . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Produkt HLÍDAČ OCHRANNÝCH ZNÁMEK 15
3.1 Právní důvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Datové zdroje . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Funkce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Pracovní náplň 20
4.1 Porada se soudním znalcem v oboru OZ . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Nepovedený návrh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Hlídání front známek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Zpracování dat z EUIPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Neplatná instrukce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Miniatury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Problémy s obrázky v databázi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 Migrace obrázků do S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9 Statistiky dat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.10 Vize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Použité technologie 31
5.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 PyPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 MinIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.8 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7



5.9 GitLab CI/CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.10 Sentry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.11 Prometheus & Grafana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.12 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.13 VMware vSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Závěr 36

Literatura 37

Přílohy 39

A Architektura a procesy 40

B Kontejnerizace 42

8



Seznam použitých zkratek a symbolů

OZ – Ochranná známka / Trademark
MVP – Minimální produkt / Minimum viable product
ÚPV / IPOCZ – Úřad průmyslového vlastnictví / Industrial Property Office of Czech

Republic
EUIPO – Úřad Evropské unie pro duševní vlastnictví / European Union In-

tellectual Property Office
WIPO – Světová organizace duševního vlastnictví / World Intellectual Pro-

perty Organization
SaaS – Software jako služby / Software as a service
API – Application programming interface
OOP – Objektově orientované programování
RDBMS – Relační databáze / Relational Database Management System
ORM – Objektově relační mapování / Object-relation mapping
ML – Machine learning / strojové učení
FTP – File Transfer Protocol
CDN – Content Delivery Network
PyPI – Python Package Index (balíčkovací systém)
AWS – Amazon Web Services
CLI – Příkazový řádek / Command-line interface
VM – Virtuální stroj / Virtual machine
vCPU – Virtual central processing unit
XML – Extensible Markup Language (formátovací jazyk)
YAML – YAML Ain’t Markup Language (formátovací jazyk)
SQL – Structured Query Language
ZIP – Kompresní archivní formát
TIF / TIFF – Tagged Image File Format (formát obrazu)
PNG – Portable Network Graphics (formát obrazu)
JPG / JPEG – Joint Photographic Experts Group (formát obrazu)

9



Seznam obrázků

1 Logo společnosti ATLAS consulting spol. s r.o. [1] . . . . . . . . . . . . . . . . . 14
2 Logo produktu HLÍDAČ OCHRANNÝCH ZNÁMEK [2] . . . . . . . . . . . . . . 15
3 Detail OZ se všemi metadaty [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Zobrazení fronty nových přihlášek [6] . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Zpracování rešerše OZ [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Vytvoření řešerše návrhu vlastní OZ [6] . . . . . . . . . . . . . . . . . . . . . . . 18
7 Původní návrh [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 Proces denní aktualizace dat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9 Schéma architektury aplikace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10



Seznam tabulek

1 Celkové počty OZ podle zdroje [4, 5, 6] . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Počty OZ rozdělené podle typu u jednotlivých úřadů [4, 5, 6] . . . . . . . . . . . 29
3 Počty OZ rozdělené podle stavu u jednotlivých úřadů [4, 5, 6] . . . . . . . . . . . 30

11



Seznam výpisů zdrojového kódu

1 Původní SQL dotaz (pro názornost dotaz byl dotaz zjednodušen) . . . . . . . . . 27
2 Řešení po optimalizaci (pro názornost dotaz byl dotaz zjednodušen) . . . . . . . 27
3 Příklad sestavení kontejneru pro službu IPOCZ parser . . . . . . . . . . . . . . . 42

12



1 Úvod

Cílem této práce je popsat pracovní náplň a zhodnotit přínos odborné praxe, kterou jsem vykonal
během bakalářského studia ve společnosti ATLAS consulting spol. s r.o.

V druhé části (2) představím samotnou společnost, její nejvýznamnější produkty, mé pracovní
zařazení a firemní prostředí, ve kterém se samotná praxe odehrávala.

V následující kapitole (3) poté popíšu konkrétní produkt, na kterém jsem se po celou dobu
odborné praxe podílel. Popsán je jeho účel, základní funkcionalita a analýza dalších možností
jeho budoucího rozvoje.

Obsah čtvrté kapitoly (4) je věnován mé pracovní náplni, vybraným větším úkolům, na kte-
rých jsem se v aplikaci HLÍDAČ OCHRANNÝCH ZNÁMEK podílel a dále technické detaily
největších problémů, na které jsem při implementaci narazil.

Další část (5) obsahuje stručný popis nejdůležitějších technologií využitých v aplikaci, pří-
padně při jejím vývoji.

V závěrečné části (6) je zhodnocen celý průběh odborné praxe, získané zkušenosti a znalosti.
Jako poslední uvádím výhody získávání praktických zkušeností oproti omezeným zkušenostem,
které je možné získat jen během bakalářského studia na vysoké škole bez praxe.

13



2 Společnost ATLAS consulting spol. s r.o.

ATLAS consulting spol s r.o. je ryze českou společností, která se už od roku 1992 věnuje vývoji,
výrobě a distribuci informačních systémů a aplikací v oblasti práva a ekonomiky. [1] Se společ-
ností ATLAS software a.s. je členem skupiny ATLAS GROUP. Společnost sídlí v budově ABC
v městské části Moravská Ostrava, dále má pobočky v Praze a Brně. Aktuálně zaměstnává okolo
200 lidí. Mezi nejvýznamnější produkty patří právní informační systém CODEXIS R⃝ a dále řada
manažerských softwarů ECONIX, do kterých spadají např. produkty EQUANTA R⃝, SMLOUVY
a HLÍDAČ OCHRANNÝCH ZNÁMEK. Vývojáři jsou rozděleni do malých nezávislých týmů
soustředících se samostatně na daný produkt.

Obrázek 1: Logo společnosti ATLAS consulting spol. s r.o. [1]

2.1 Pracovní zařazení

Ve společnosti se angažuji již 2. rokem, v období počátku odborné praxe jsem byl zařazen
do oddělení vývoje produktu HLÍDAČ OCHRANNÝCH ZNÁMEK, konkrétně na programování
backendové části přípravy dat a komparací OZ. Mým primárním úkolem byla převážně imple-
mentace služeb v jazyce Python, která občas přesahovala i do jazyků PHP, Ruby, Java. Část
času jsem věnoval také psaní bash skriptů, databázových procedur a případně jejich optimali-
zaci. Dalšími povinnostmi byla účast na pohovorech potenciálních kolegů do backendového týmu
a někdy také rozhodování o jejich dalším setrvání.

Zpočátku byl mým vedoucím projektu a mentorem Radovat Kepák, ale po jeho odchodu
z firmy jej nahradil Ing. Martin Telecký a přímým nadřízeným se stal Mgr. Bc. Tomáš Řehák.
Součástí backendového týmu byl „ML guru“ Bc. Jakub Kól, po určitou dobu také programátoři
Marek Vlčinský a Ing. Ondřej Garncarz, dále frontend PHP vývojáři Bronislav Ceh a Michal
Matúš. Na analytice a návrhu se také podíleli za oddělení analýz Ing. et Ing. Gabriela Hrubešová,
Ing. Veronika Štětková a vedoucí Ing. Zdeněk Vrba.

14



3 Produkt HLÍDAČ OCHRANNÝCH ZNÁMEK

Nová aplikace HLÍDAČ OCHRANNÝCH ZNÁMEK je poskytována jako SaaS a umožňuje uži-
vatelům získat plnou kontrolu nad vlastními OZ a pomáhá je chránit před zneužitím konkurencí.
Taktéž v připravované funkcionalitě umožňuje upozorňovat na nové přihlášky od konkurence.
Logo produktu je zobrazeno na obrázku 2.

Obrázek 2: Logo produktu HLÍDAČ OCHRANNÝCH ZNÁMEK [2]

3.1 Právní důvod

Od 1.1.2019 dochází v novele zákona o OZ k zásadním změně při registraci OZ. Nově již ÚPV
nebude zkoumat, zda přihláška není shodná nebo neobsahuje shodné prvky se starší OZ a po-
vinnost se přenáší na vlastníky současných OZ, kterým je umožněno podávat námitky proti
registraci. Pokud vlastník nevznese včas námitku, ÚPV OZ zapíše i přes shodnost s již exitující
OZ. Vlastníci by si tedy měli pravidelně provádět monitoring zveřejněných OZ. [3]

Povinnost se tedy nově přenáší na majitele OZ, aby si svou registrovanou OZ chránil před re-
gistrací jiným subjektem. Úřad vydává v týdenních intervalech věstníky, ve kterých exportuje
informace o nově přihlašovaných OZ a uživatelé mají od data zveřejnění věstníku lhůtu 3 měsíce
na podání námitek. Pokud tak neučiní, je OZ po 3 měsících prohlášena za registrovanou, přechází
tedy do stavu zapsána a je velmi náročné takovou kolizní OZ dodatečně napadnout a obhájit
si na ni svá práva. Pravděpodobnost úspěchu v soudním sporu je poté velmi nízká. Naopak
v případě podání námitky v řádné lhůtě k OZ, na které je zjevná alespoň částečná podobnost,
je vysoká šance na úspěch formou následného zamítnutí přihlašované OZ úřadem. Majitelům
přihlašované kolizní OZ je poté většinou doporučeno ze strany patentových zástupců si takovou
registraci nechat zamítnout, než řešit spor v dlouhých a nákladných soudních procesech.

3.2 Datové zdroje

Aplikace si udržuje vlastní databázi OZ, kterou automaticky denně aktualizuje z datových zdrojů
českého ÚPV [4] a evropského úřadu OHIM [5], který byl v roce 2016 přejmenován na EUIPO.
Do budoucna je vize integrace dat systému Madrid ze světového úřadu WIPO. Poté v souvislosti
s expanzí obchodního zastoupení do nejbližších evropských států se očekává také zahrnutí dat
ze zdrojů např. „Úrad priemyselného vlastníctva Slovenskej republiky“ nebo polského „Urząd
Patentowy Rzeczypospolitej Polskiej.“

15



3.3 Funkce

Po prvním přihlášení průvodce provede uživatele přidáním první známky do modulu hlídané
OZ. Po zpracování komparací se uživateli zobrazí hlavní funkcionalita, a to přehledné seřazení
napadnutelných OZ do fronty podle pravděpodobnosti shody. Pojem „napadnutelných OZ“ lze
vysvětlit jako sjednocení všech nově přihlašovaných známek, tedy OZ ve stavech podaná nebo
zveřejněná, včetně podstavů vkládání údajů, průzkum a námitky. Z toho je patrné, že uživatelé
aplikace mají možnost nahlížet i mezi OZ, které ještě nebyly zveřejněny ve věstníku, ale jsou
ještě ve stavu podávání přihlášky. Tento stav může trvat i několik měsíců. V budoucnu bude tato
informace užitečná, pokud budu chtít sledovat nově podané OZ od konkurence. Implementace
zobrazení front je znázorněna na obrázku 4. Pro každou OZ je možné zobrazit detail podobně
jako na obrázku 3.

Obrázek 3: Detail OZ se všemi metadaty [6]

Fronty jsou v MVP implementovány dvě, jedna se seřazenými známkami podle textové
a druhá podle obrazové podobnosti. Zároveň jsou do textové fronty zařazeny pouze známky
obsahující textové vyjádření a do obrazové fronty obsahující zpracovatelný obrázek. Tím je také
umožněno hlídat OZ typu prostorová, slovní grafická (dnes se již nepoužívá), zvuková, holo-
gram, tvořená barvou a poziční. Fronty mohou uživatelé pravidelně vyprazdňovat, čímž se jim

16



zobrazují při dalším navštívení aplikace pouze OZ, které k dané známce ještě neviděli. Dále je
možné v aplikaci nastavit automatické zasílání notifikace na e-mail, pokud pravděpodobnost
shody překročí nastavenou hranici.

Obrázek 4: Zobrazení fronty nových přihlášek [6]

Další funkcionalitou jsou rešerše OZ, znázorněné na obrázku 5. Podobně jako v předchozím
odstavci jde o hledání podobných OZ, ale navíc se zobrazují i OZ v ostatních právních stavech.
Tedy jde o stavy např. registrovaná, zamítnutá, zrušená, ex nunc (zrušený platný dokument)
a ex tunc (neplatný dokument). Dále je zobrazení rozšířeno o hledání napříč zdroji, tedy k OZ
z ÚPV se zobrazí i podobné OZ z databáze EUIPO. Oproti hlídání není možné seznamy čis-
tit, ani zasílat notifikace a je omezeno procházení na pouze prvních několik stran (vzhledem
k omezení komparačních algoritmů). Pro počet rešerší není definováno žádné licenční omezení.

17



Obrázek 5: Zpracování rešerše OZ [6]

Rešerše OZ je dále doplněna o možnost vložení vlastního návrhu, kam může uživatel zadat
vlastní textové vyjádření a nahrát obrázek. Pro úspěšnou komparaci je zapotřebí, aby uživatel
nahrál obrázek v dobré kvalitě a bez průhlednosti (alfa kanálu). Vizualizace formuláře pro zadání
dat OZ je znázorněna na obrázku 6.

Obrázek 6: Vytvoření řešerše návrhu vlastní OZ [6]

18



Poslední funkcí, ale zatím nedokončenou, je hlídání konkurence pomocí získaných dat vlast-
níků OZ. Uživatel si tedy bude moct definovat název společnosti nebo jeho část a systém za něj
bude hlídat nově podané přihlášky daného vlastníka, změny u existujících OZ a samozřejmě
automaticky zasílat e-mailové notifikace dle nastavení v aplikaci.

Další možností rozvoje je automatické hlídání uživatelem zvolené části obrazového nebo
textového vyjádření OZ.

19



4 Pracovní náplň

V předchozí kapitole jsem popsal klíčové funkce aplikace a záměrně jsem vybral pouze ty části
systému, u kterých bylo potřeba zajistit datovou vrstvu. Aby bylo možné efektivně pracovat
s datovými procesy, rozdělil jsem přípravu dat na následující služby:

stahovač otevřených dat ÚPV – automatický stahovač ZIP exportů otevřených dat, při dal-
ším spuštění stahuje inkrementálně pouze DIFF exporty.

parser otevřených dat ÚPV – služba, která je schopna rozbalit ZIP archiv, inkrementálně
proiterovat nezpracované exporty, parsovat XML data a převést je do databázové struktury,
uložit přílohy do centrálního úložiště včetně zamezení duplicitního uložení stejných vícekrát
exportovaných příloh (většinou se jedná o obrázky typu GIF, JPG, ale vyskytují se občas
MP3 a MP4 formáty). Zároveň také generuje miniatury.

stahovač otevřených dat EUIPO – inkrementální stahovač ZIP archivů OZ a anonymizova-
ných dat vlastníků OZ, jedná se o stahovač z FTP úložiště se zajištěním opakování pokusů
při chybě, vzhledem k velmi častých chybám a opakující se nedostupnosti FTP serveru.

parser otevřených dat EUIPO – zajišťuje inkrementální rozbalovaní ZIP archivů, uložení
rozsáhlých metadat do relační databáze a přenesení příloh do centrálního úložiště (převážně
se jedná o JPG a TIF soubory). Jako postprocessing převádí TIFF soubory (podle formátu
nikoliv přípony, která je poměrně nespolehlivá) do PNG. Také generuje miniatury.

obrazový a textový komparátor – API servery poskytující seřazené fronty identifikátorů
OZ, seřazených podle pravděpodobnosti shody. Vzhledem k množství dat je nutné v noč-
ních aktualizacích připravovat indexy, ukládat výsledků komparací do cache a vracet vý-
sledky stránkovaně. Zajišťuje data do front v modulu hlídaní OZ a rešerší. Taktéž je
schopna v reálném čase zpracovat a provést komparaci nového návrhu OZ s použitím
existujícího indexu.

denní aktualizační skript – služba zajišťující automatické spuštění denní aktualizace dat, řeší
správnou návaznost spouštění jednotlivých služeb, souběžnost některých služeb (pokud
je to logicky možné a dovoluje to dostupná kapacita), přípravu indexů a znovunačtení
použitých indexů v komparátorech.

podpůrné služby – např. proxy s cache pro obrazové a textové komparátory, CDN server
s obrázky OZ, skripty na zálohování databáze, monitoring, logovací služba.

Všechny služby jsou zobrazeny v návrhu architektury ve schématu 9. Průběh denní aktuali-
zace je zobrazen ve FlowChart schématu 8.

Získávání, zpracování informací ze zdroje ÚPV, návrh datových struktur, podpůrné služby,
skripty a správa DevOps je kompletně má vlastní práce. Na zpracování dat z EUIPO jsem se

20



z důvodu časového tlaku podílel napůl s kolegou Markem Vlčinským. Oba komparátory jsou také
má práce, ML algoritmus do komparace dodal Bc. Jakub Kól. Frontend rozhraní zpracovali PHP
specialisté. Na migraci obrázků do S3 jsem se podílel návrhem a řešením některých komplikací,
většinu programovacích prací řešil kolega Ing. Ondřej Garncarz.

V následujících sekcích uvedu způsob získávání informací, postupy zpracování úkolů a řešení
nastalých chyb.

4.1 Porada se soudním znalcem v oboru OZ

Před samotnou implementací a současně i s ní bylo nutné provádět postupné analýzy, abychom
detailně pochopili danou problematiku. Produkt je v ČR naprosto unikátní a není možné najít
konkurenční systém, který by nabízel podobnou funkcionalitu.

Proto jsme oslovili soudního znalce v oboru OZ, aby s námi probral způsob, jak provádí
známkovou rešerši. Dále bylo cílem prodiskutovat náš návrh aplikace. Také jsme již měli připra-
vený prototyp komparačního algoritmu.

Od soudního znalce jsme se dozvěděli, že pravidelnou rešerši provádí ručně, tedy postupně
prochází národní a mezinárodní databáze a zapisuje do nich textová vyjádření OZ. Výsledky
manuálně prochází a vyhodnocuje OZ, které by mohly být podobné nebo shodné.

Dle názoru soudního znalce nelze použít aplikaci jako oficiální odůvodňující dokument pro roz-
hodný orgán, ale pouze jen jako předběžnou rešerši. Podobnost se dále velice špatně prokazuje
a bez znalostí a zkušeností soudního znalce je těžké podobnost obhájit. Také např. u léčiv, úřady
řeší i chemické sloučení a léčenou nemoc. Námitky a výsledky sporů nejsou veřejně dostupné.

4.2 Nepovedený návrh

Původní návrh aplikace, zobrazený na obrázku 7, spočíval ve vytvoření rozhraní, ve kterém
si uživatel označí OZ, které chce sledovat. Komparátory by v offline režimu každý den hledaly
možné shody a generovaly uživateli potencionální shody, tedy by se zobrazovaly pouze dvojice OZ
– hlídaná OZ oproti kolizní OZ. Nalezené možné kolize by byly seřazeny podle pravděpodobnosti
sestupně. Součástí by byly i e-mailové notifikace. Webová aplikace počítala s nasazením v cloudu
s offline backend službami spouštěnými periodicky v cronu. Tyto služby by byly hostovány
na interní firemní virtualizaci, jelikož komparace jsou velmi náročné na HW prostředky a zároveň
není nezbytně nutné zajistit 100% dostupnost těchto služeb.

21



Obrázek 7: Původní návrh [6]

Tento koncept nicméně narazil ve fázi realizace na hranice možností použitých algoritmů.
Zejména obrazová komparace je velice subjektivní a uživatel nemusí v nabízených výsledcích
podobnost najít a pochopit. Dále je téměř nemožné algoritmem rozhodnout, zda je míra kolize
dostatečná, aby byla uživateli vytvořena notifikace. Po nastavení určité hranice je určitá prav-
děpodobnost, že algoritmus nevyhodnotí vytvoření notifikace za nezbytné a uživatel se o možné
kolizní OZ nedozví a aplikace mu vůbec neumožní se k této OZ, jakkoliv dostat.

Přestože vedoucí projektu od této myšlenky nehodlal ustoupit, bylo z těchto jasných důvodů
od téměř dokončeného produktu po první demo prezentaci upuštěno a začalo se hledat nové
řešení. Vedoucí projektu později z této pozice odstoupil a nahradil jej zkušenější kolega Ing.
Martin Telecký.

4.3 Hlídání front známek

Jedinou vyhovující variantou s přenesením rozhodnutí o kolizi na uživatele bylo vytvoření sys-
tému hlídání front. Nové přihlášky OZ jsou uživateli seřazeny podle různých algoritmů ve více
frontách. Tedy k hlídané OZ se zobrazí až dvě fronty podle toho, jestli daná OZ obsahuje tex-
tové nebo obrazové vyjádření, případně obojí dohromady. Uživatel poté může frontu procházet
a hledat v zobrazených textových a obrazových vyjádřeních možnou kolizní OZ, kterou si označí
a přesune v systému do složky podezřelých OZ.

Tímto způsobem má uživatel možnost projít si všechny nové přihlášky a díky řadícímu al-
goritmu se mu zobrazují na prvních místech shody s nejvyšší pravděpodobností. V praxi tedy
uživatel, pokud nenajde možnou kolizi v první 5 až 10 známkách (v určitých případech v prvních
desítkách), nemusí již procházet frontu dál. Ve frontách se nachází řádově desetitisíce OZ, kde

22



oproti ručnímu porovnání s každou OZ ušetří aplikace uživateli množství stráveného času. Pro-
tože na českém trhu existují společnosti se stovkami OZ, je možné jim hlídání takového počtu
OZ velmi zjednodušit s minimálními požadavky na personál obsluhující aplikaci.

Aby byl celý workflow efektivní a uživatel neviděl po každém spuštění aplikace stejné fronty
obsazené desetitisícem OZ, je v aplikaci implementováno tlačítko pro vyčištění fronty. Reálně
by ale bylo nutné v databázi uložit např. 70 000 identifikátorů OZ * 2 fronty * celkový počet
hlídaných známek napříč uživateli v aplikaci. Protože by bylo náročné uchovávat takové množ-
ství informací všech odstraněných známek z front, bylo nutné hledat náhradní řešení. Proto bylo
vytvořeno na základě seskupení procesů do denní aktualizace, ukládání pouze data posledního
vyčištění zvlášť textové a obrazové fronty. Toto datum se vztahuje k datu poslední aktualizace
datového exportu zdroje. Tedy po vyčištění fronty si systém uloží pouze datum poslední aktua-
lizace, které získá z backendového API a při dalším načtení aplikace podle tohoto data zobrazí
uživateli ve frontách pouze OZ, přidané nebo změněné po tomto datu.

Při komparaci je tedy nutné seřadit všechny neregistrované OZ (logaritmická složitost) a poté
iterovat přes výsledek a porovnávat data podání přihlášky s datem posledního vyčištění fronty
(lineární složitost). Kombinace těchto dvou složitostí algoritmů stále umožňuje provádět kom-
parace a zobrazovat výsledky v reálném čase.

4.4 Zpracování dat z EUIPO

Přestože aplikace obsahovala pouze data ÚPV byl prodej licencí klientům již zahájen. Dle nega-
tivní zpětné vazby od obchodníků bylo nutné, co nejdříve zahrnout do aplikace i data evropského
úřadu EUIPO.

Ačkoliv by se tento úkol zdál pouze jako zpracování podobné struktury dat jako u otevře-
ných dat ÚPV, reálně byl vývoj mnohem složitější a nastalo spoustu komplikací. Stahování dat
je možné z exportů umístěných na portálu EUIPO, nicméně tuto stránku je strojově obtížně
vytěžovat. Před přístupem k seznamu souborů portál požaduje zaškrtnutí checkboxu souhlasu
s podmínkami. Tento checkbox je zablokovaný, dokud uživatel neotevře nejdřív dialog s obsahem
podmínek. Teprve poté je možné po zavření dialogu zaškrtnout checkbox a potvrdit formulář
odesílacím tlačítkem. Na pozadí aplikace proběhne předání autorizačních klíčů a zobrazí se vý-
pis adresáře. Po kliknutí na kterýkoliv soubor dojde k přesměrovaní na jeho adresu a předání
autorizačních klíčů v parametru.

Po delší analýze možností automatizovaného skriptu na stahování těchto dat, se nám nakonec
podařilo zjistit, že po přesměrování a autorizování požadavku server uživatele přesměruje na FTP
server, ze kterého se provede stažení souboru. Na pozadí se předají přihlašovací údaje, které
jsou zatím stále (již několik měsíců) neměnné. Implementace automatického stahovače spočívala
v jednoduchém skriptu, který bude rekurzivně zpracovávat adresáře a stahovat jejich obsah
do interního MinIO storage.

23



Úřad průběžně vydává nové exporty a po čase maže jejich starší verze, tedy je pro nás nutné
si tyto soubory uchovávat a nemazat dojde-li k jejich odstranění na portálu úřadu. Exporty
zabírají celkově okolo 150 GB místa na disku.

Další částí bylo napsat službu, která rozbalí ZIP soubory, zpracuje XML soubory a uloží jejich
obsah do databáze. Datové soubory EUIPO obsahují mnohem více atributů a složitější strukturu
XML. Aktuálně je z těchto souboru vyparsováno 3,5 milionu známek rozložených v 520 expor-
tech. Množství unikátních známek (podle čísla přihlášky) je skoro 1,8 milionu. Zbytek jsou pouze
aktualizační transakce, které obsahují kompletní strukturu dat, a nikoliv jen informaci o změně
a nové hodnoty změněných atributů. Dále služba nahraje přílohy do objektového datového sto-
rage. V tuto chvíli se ukázalo jako nejrychlejší řešení uložit jejich obsah do databáze podobně
jako u dat ÚPV.

Vzhledem k množství dat byla ale doba zpracování kompletního datasetu 72 hodin oproti
1,5 hodině u datasetu ÚPV. To bylo způsobeno množstvím exportovaných atributů, násobně
větším počtem OZ, množstvím mnohem častějších aktualizačních transakcí a většími obrázky.

Bylo upuštěno od zpracování všech jazykových mutací Niceských tříd, kdy jsme se roz-
hodli spuštěný testovací skript kompletního zpracování ukončit po 6 dnech nepřetržitého běhu.
Při zpracovávání je každý export obalen databázovou transakcí, což velmi snižuje čas potřebný
ke zpracování. Transakce jsou vytvořeny pro každý exportní balíček, dojde-li tedy při importu
k chybě, spustí se implicitně operace ROLLBACK k vrácení všech změn provedených touto
transakcí. V opačném případě je transakce příkazem COMMIT potvrzena.

Na poslední chvíli před nasazením do produkce jsme si také všimli, že zhruba 58 tis. obrázků,
tj. zhruba 8 %, se uživatelům nedokáže zobrazit. To bylo způsobeno obrazovým formátem TIFF,
který webové prohlížeče nepodporují. Ke zpracování musela být rychle doplněna služba, která
dokázala rozpoznat typ souboru a pokud se jednalo o TIFF, tak jej překonvertovat do podpo-
rovaného formátu. Detekce podle přípony souboru je sice mnohem rychlejší, ale u zmíněného
datového zdroje nespolehlivá, neboť úřad exportuje i TIFF s příponou JPG. Ke konverzi byl po-
užit nástroj ImageMagick a jako výstupní formát byl zvolen PNG, protože je stejně jako TIFF,
formátem s bezztrátovou kompresí.

4.5 Neplatná instrukce

Při nasazování velkých datových změn do produkčního prostředí používáme migraci celých VM.
Scénář je obvykle takový, že na testovací server se postupně nasazují nové funkce, probíhá opa-
kované zpracování dat, průběžné testování a opravy chyb. Po dokončení implementace se práce
předá na oddělení produktové podpory, která dle zadaných scénářů a s pomocí automatických
testů zkontroluje správnou funkčnost kompletní aplikace. Nejjistější metodou, jak poté aplikaci
přenést do produkce, je vypnout VM, naklonovat VM na produkční virtualizační cluster, tam jej
zapnout a připojit uživatelská data. Finální přepnutí nové verze lze takto provést s výpadkem
produkční aplikace na maximálně jednotky minut. K tomuto způsobu nasazení se za necelý rok
provozu přistoupilo celkově 3x.

24



Bohužel ani tato metoda není úplně 100% a v jednom případě došlo k neúspěchu a navrá-
cení původní verze. Po spuštění VM totiž jeden z kontejnerů nedokázal naběhnout. Kontejner je
aplikace izolovaná v přenosném balíčku obsahující veškeré závislosti, příklad sestavení takového
kontejneru je uveden ve zdrojovém kódu 3. Dle stavových informací byl kontejner ukončen chy-
bovým kódem 132. Následovaly opakované pokusy o spuštění, otestování spouštění a restartu
na testovacím serveru a poté bližší zkoumání příčiny chyby. Po podrobnější analýze jsem přišel
dle manuálů na to, že se jedná o chybu SIGILL, tedy Illegal instruction. Jedna z použitých
knihoven byla po aktualizaci sestavena pro procesory s novější instrukční sadou AVX2, bohužel
produkční servery s procesory Intel Xeon X5670 touto instrukční sadou nedisponují.

Prvním řešením by bylo, namísto použití předkompilovaných balíčků z PyPI repozitáře,
sestavit a zkompilovat balíčky ze zdrojových kódů přímo na serveru. Tohle řešení je ale velmi
nepraktické a použití novějších instrukcí AVX2 pro práci s vektory má jistý důvod a jejich
vynechání by mělo negativní vliv na výkon aplikace.

Další možností by bylo použít dočasně starší verzi balíčku. Jednalo by se o nejjednodušší
možný zásah, jak aplikaci ihned zprovoznit. Starší verze byla kompatibilní a došlo k úspěšnému
nasazení. Přesto ale toto řešení nebylo do budoucna perspektivní.

Finálním řešením bylo nakonec postupně vybalancovat VM mezi virtualizačními clustery
a přenést celou VM na cluster s novějšími procesory Intel Xeon E5-2667 v4. Tím se mohl pro-
vést i upgrade na nejnovější verzi balíčků a zároveň použití novějšího procesoru v kombinaci
s aktualizovaným balíčkem mělo za následek přibližně 30% zrychlení komparací v aplikaci.

4.6 Miniatury

V době největšího tlaku na co nejrychlejší vydání rozšiřující funkcionality EUIPO dat nebyl čas
na optimalizaci, a proto jsme v této další fázi museli začít řešit optimalizace vzhledem k tomu, že
načítání stránky hlídaných OZ mohlo trvat i desítky vteřin. Vše se odvíjelo od počtu hlídaných
OZ uživatelem, nicméně se rychle začaly prodávat licence s hlídáním i stovek OZ nebo dokonce
neomezené licence, přestože na to aplikace ještě nebyla připravena.

Největší bottleneck byl datový přenos. Protože při testování jsme se nacházeli v interní fi-
remní síti, kde byly také umístěny produkční servery, byla rychlost načítání obrázků poměrně
rychlá. To ale nemohli říct uživatelé, kteří k aplikaci přistupovali přes průměrně rychlý inter-
net nebo dokonce přes mobilní datovou síť. Obchodníci také při prezentaci produktu používají
mobilní data. Taktéž bylo pro nás neočekáváné zásadní zpomalení při prezentacích mimo firmu.

Byla tedy implementována služba, která načítá obrázky z databáze a postupně pomocí ná-
stroje ImageMagick obrázky komprimuje na velikost 80 px pro nejdelší hranu a generované
miniatury ukládá do oddělené databáze.

25



4.7 Problémy s obrázky v databázi

I přesto, že v dnešní době již databáze plně podporují uložení binárních souborů a takové řešení
někteří lidé na diskusních fórech dokonce doporučují [7], došlo při nárůstu dat z EUIPO zdroje
ke značným komplikacím.

Binární data jsou uložena v samostatné tabulce v datových polích typu MEDIUMBLOM
s limitem velikosti 16 MB. Obsahem tabulky je pouze složený primární klíč a atribut s binárními
daty.

První problém nastal při přípravě obrázků pro komparaci. Ten pomocí SQL dotazu vybírá
všechny obrázky z tabulky a předává je službě, která postupně v dávkách po 64 obrázcích
dopočítává „embedding vectors“ a ukládá je do MongoDB databáze. Tyto vícerozměrné vektory
se poté využívají k výpočtu pravděpodobnosti shody v komparaci obrázků.

Předem uvedu, že na serverech je vypnut „swap space“. Tedy není k dispozici místo, kam
by OS mohl odložit části virtuální paměti v případě nedostatku operační paměti. při plném
obsazení operační paměti dříve docházelo k extrémnímu množství zápisu na relativně pomalý
disk (SAS disky v SAN diskovém poli) a tím i k zásadní degradaci rychlosti aplikace. V sou-
časné době, pokud dojde k zaplnění paměti, systém násilně ukončí proces s největší spotřebou
paměti (většinou se jedná o chybu skriptu nebo proces se špatně omezenou cache dat), ten se
automaticky restartuje a aplikace bez problému pokračuje dál v provozu.

Při naplnění pouze českými OZ je v databázi okolo 2 GB dat, tedy se může celý výsledek
dotazu uložit do paměti a poté postupně zpracovávat. S aktuálním množstvím více než 100 GB
už není možné využívat operační paměť, ale je třeba použít postupný fetch záznamů po dávkách.
Ten načítá postupně z databáze řádek po řádku (unbuffered query), většinou po malých dávkách
a předává je aplikaci. V tuto chvílí nastává dlouho téměř neřešitelný chybový kód databáze, který
nás týdny doslova nenechal v klidu spát:

Error Code: 2013. Lost connection to MySQL server during query

Celý problém spočívá v ukončení spojení ze strany MySQL serveru, pokud vyprší timeout.
Bohužel, i přes veškerou snahu, konzultaci i navyšování prakticky všech dostupných limitů až
na extrémní hodnoty, se nám nepodařilo zjistit, co přesně tuto chybu způsobuje. Komplikace
nastaly i při testování oprav, kdy pokusné iterace padaly za běhu naprosto náhodně, jindy
úspěšně proběhlo i několik pokusů za sebou.

Řešením bylo iterovat přes chunk, tedy rozdělit výsledek na malé dávky pomocí kombinace
LIMIT a OFFSET. To se zdálo jako jednoduché řešení, které ale hned přineslo další potíže.
Přestože příkaz OFFSET má obecně lineární složitost, při použití s chunk se složitost blíží
kvadratické. Server musí načíst veškerá data z disku až po dosažení LIMIT, to vede k obrovské
náročnosti na I/O. I přes použití výkonných NVMe SSD disků jsme se velice rychle dostali
na zpracování v řádu desítek hodin.

26



Jako příklad uvedu dotaz s limit = 100 000 a offset = 0, kdy takový dotaz trvá desítky
vteřin. Bohužel ten samý dotaz s offset = 2 000 000, už trvá v řádu hodin. Zjednodušený příklad
dotazu je uveden ve výpisu 1.

SELECT trademark_id, binary_data

FROM tm_images

LIMIT 100000 OFFSET 2000000

Výpis 1: Původní SQL dotaz (pro názornost dotaz byl dotaz zjednodušen)

Řešení bylo nakonec velice jednoduché. Stačilo pouze vybrat záznamy z tabulky podle LI-
MIT a OFFSET bez binárních dat a výstupní set identifikátorů propojit s tabulkou, kde dojde
k vybrání záznamů podle implicitně indexovaného primárního klíče. Dotaz je ve výpisu 2.

WITH cte AS (

SELECT DISTINCT trademark_id

FROM tm_images

LIMIT 100000 OFFSET 2000000

)

SELECT ti.trademark_id, ti.binary_data

FROM tm_images ti JOIN cte ON ti.trademark_id = cte.trademark_id

Výpis 2: Řešení po optimalizaci (pro názornost dotaz byl dotaz zjednodušen)

Jako druhý problém, který zastavil plánovaný release verze do produkce, se stalo přeplňování
databáze. K tomu dochází, pokud z databáze souvisle mažeme a vkládáme další data. Bohužel
použitý engine InnoDB v MySQL nedokáže s odebranými daty efektivně pracovat a dochází
k nekonečnému rozšiřování databáze.

Ve výchozím nastavení má MySQL od verze 8 zapnutou konfiguraci innodb_file_per_table.
Zapnutí této volby bylo doporučováno jako řešení problému, v aplikaci je ale použita taktéž
verze 8, takže bylo nutné hledat řešení jiné.

Další možností bylo použití příkazu OPTIMIZE TABLE <nazev_tabulky>. Ten sice stan-
dardně uvolní volné místo, v našem případě ovšem nepomohl. Systém InnoDB nepodporuje
optimalizace, tedy je na pozadí provedeno kopírování dat do nového datového souboru a od-
stranění původního. I přesto, že nad tabulkou s binárními daty tento příkaz trvá několik hodin,
nový datový soubor má nakonec téměř totožnou velikost jako původní.

Jedinou možností, jak uvolnit nevyužité místo bylo provést zálohu databáze a její obnovení.
To ovšem není jednoduchý krok, vyžaduje ruční zásah a neobejde se bez několikahodinového
částečného výpadku aplikace. Proto byla tato operace prováděna zhruba 1–2x měsíčně o víkendu,
kdy je v aplikaci minimální provoz. Bohužel během doby výpadku mohou sice uživatelé navštívit
aplikaci, ale nenačtou se obrázky, což je v této aplikaci zásadní funkcionalita.

Mezi další možné řešení, jak se vyhnout problémům s MySQL, byla migrace relační databáze
do PostgreSQL. To by ale vyžadovalo upravit databázové struktury, dotazy, procedury a nebyl

27



by zaručen pozitivní výsledek. Komerční databáze jako např. Microsoft SQL Server nebo Oracle
Database by v případě použití v produktu nepřinesly nic zásadního navíc vzhledem k vysoké
nákladnosti oproti open-source databázím. Podporu nejpoužívanějších databází MySQL, Post-
greSQL a SQL server jsou schopni dlouhodobě zajistit interní databázoví specialisté.

4.8 Migrace obrázků do S3

Nejpřijatelnějším dlouhodobým řešením bylo přenesení obrázků mimo databázi. Jako nejvhod-
nější řešení byl navržen MinIO storage, tedy open-source objektový storage kompatibilní s Ama-
zon S3. Tohle řešení má spoustu výhod:

• Významně se sníží množství dat v relační databází a tím se zrychlí možnost zálohování,
obnovení a zpracování dat

• Sníží se zátěž databázové serveru (převážně síťový provoz)

• Zrychlí se načítání obrázků uživatelům

• Do budoucna se můžou data ukládat na S3 úložištích od Amazonu a sloužit tedy jako
velmi rychlá CDN s neomezenou kapacitou

Nevýhody:

• Využitá kapacita je vyšší než při uložení v databázi, kvůli uložení velkého množství malých
souborů přímo na souborový systém, což je výchozí systém uložení dat MinIO serveru

Před migrací obrázků se uživatelům posílaly obrázky přímo při načítání, bylo tedy výhodné
poslat uživateli v jednom requestu vyrenderované HTML a zároveň v base64 zakódované obrázky.
Tohle řešení mělo ale nevýhodu v možnosti cachování obrázků u uživatele, jelikož se použité
miniatury často opakují. Použití externí CDN vedlo ke znatelnému zrychlení a zefektivnění
využití cache webových prohlížečů.

4.9 Statistiky dat

Součástí přípravy dat bylo také nutné zhodnotit jaká data se v databázi zobrazují, nacházet
nestandardní stavy a podle toho postupovat při návrhu a rozšiřování funkcí aplikace. Mezi
vybrané statistiky určené pro analytiku, které zde uvedu jsou celkové počty OZ podle zdroje
v tabulce 1, počty OZ seskupené podle typu v tabulkách 2a a 2b. Dále bylo užitečné seskupení
OZ podle stavu zobrazené v tabulkách 3a a 3b.

Tabulka 1: Celkové počty OZ podle zdroje [4, 5, 6]

Zdroj Datum aktulizace Počet OZ Velikost příloh

ÚPV 13. květen 2020 266 538 2 198 M
EUIPO 12. květen 2020 1 810 566 65 356 M

28



Tabulka 2: Počty OZ rozdělené podle typu u jednotlivých úřadů [4, 5, 6]

(a) ÚPV k 13. květnu 2020

Typ Počet OZ Obsahuje přílohu Obsahuje text

Slovní 123 561 0,01 % 100,00 %
Kombinovaná 107 278 99,98 % 100,00 %
Slovní grafická 18 269 99,98 % 100,00 %
Obrazová 16 384 99,67 % 48,49 %
Prostorová 1 003 99,90 % 35,79 %
Tvořená barvou 31 100,00 % 0,00 %
Se vzorem 3 100,00 % 0,00 %
Hologram 2 100,00 % 100,00 %
Poziční 2 100,00 % 0,00 %
Jiná 2 100,00 % 50,00 %
Pohybová 1 100,00 % 100,00 %
Multimediální 1 100,00 % 0,00 %
Zvuková 1 100,00 % 0,00 %

(b) EUIPO k 12. květnu 2020

Typ Počet OZ Obsahuje přílohu Obsahuje text

Slovní 1 042 740 0,00 % 100,00 %
Obrazová 755 310 99,86 % 90,90 %
Prostorová 9 769 99,73 % 38,94 %
Jiná 1 027 98,93 % 30,48 %
Tvořená barvou 990 100,00 % 9,39 %
Zvuková 348 75,29 % 4,31 %
Poziční 179 100,00 % 8,94 %
Pohybová 84 8,33 % 35,71 %
Se vzorem 64 100,00 % 4,69 %
Multimediální 43 0,00 % 53,49 %
Hologram 12 75,00 % 58,33 %

29



Tabulka 3: Počty OZ rozdělené podle stavu u jednotlivých úřadů [4, 5, 6]

(a) ÚPV k 13. květnu 2020

Stav Počet OZ

Zapsaná 126 386
Zaniklá 97 996
Zamítnutá/Zpětvzatá 35 524
Podaná 2 726
Zveřejněná 2 448
Zrušená/Neplatná 1 458

(b) EUIPO k 12. květnu 2020

Stav Počet OZ

Zapsaná 1 245 931
Zaniklá 280 212
Zamítnutá/Zpětvzatá 191 475
Zveřejněná 68 811
Podaná 20 444
Zrušená/Neplatná 3 693

4.10 Vize

Dalšími možnostmi pokračování vývoje je z technického hlediska rozšíření unit testů na všechny
služby, zahrnutí připravených akceptačních testů do CI pipelines a také jejich automatické spouš-
tění po nasazení a v pravidelných intervalech běh jako health check služba na produkčním
serveru. Komplexní automatické testování také velmi ulehčí migraci noční aktualizace z Luigi
do Airflow, migrace všech služeb z VM do nového Kubernetes clusteru a migraci z MySQL
na PostgreSQL. Také by byl vhodný refactoring komparátorů, vylepšení cachování na straně
backendu a přepis REST API do GraphQL.

Z hlediska rozšiřování funkcí jde např. o zahrnutí dat vlastníků a vytvoření modulu hlídání
konkurence, dále komparaci uživatelem vybrané části obrazu nebo textu v hlídání OZ. Dále také
rozšíření dat o světový úřad WIPO, polský a slovenský úřad průmyslového vlastnictví.

30



5 Použité technologie

V této kapitole zmíním všechny nejdůležitější technologie použité v aplikaci nebo při jejím vývoji.
U některých také popíšu jejich nalezené klady a zápory.

5.1 Python

Python [8] je interpretovaný programovací jazyk, který před 30 lety založil Guido van Ros-
sum. Zaměřuje se na čitelnost, používá striktní odsazování kódu namísto závorkování. Kód je
dynamicky typovaný (podporuje type hints) a používá automatickou správu paměti (garbage
collector). Podporuje také OOP. V praxi se používá ve verzích 2.x (oficiálně ukončena pod-
pora v roce 2020) a dnes již častější 3.x. Až na drobné problémy s kompatibilitou (např. práce
se soubory) je plně multiplatformní. Oficiálním balíčkovacím systémem je PyPI [9]. Styl kódu je
standardizován v PEP 8 [10].

5.2 PyPI

Python Package Index [9], zkráceně PyPI je balíčkovací systém pro Python. Aktuálně je pova-
žovaný za oficiální Python softwarový repozitář a obsahuje přes 227 tisíc balíčků. Obsluhuje se
nástrojem PIP [11] a použité balíčky zapisují do requirements.txt souboru, také se doporučuje
v souboru uvádět i použité verze.

Nástoj PIP oproti Yarn [12] (JavaScript) nebo například Composer [13] (PHP) poskytuje
pouze základní funkce a neumožňuje např. automatizovanou správu requirements.txt souboru
nebo závislostí. Mezi nejvýznamnější použité knihovny patří:

SQLAlchemy [14] – Open-source sada nástrojů pro práci s SQL a ORM.

Alembic [15] – Sada nástrojů pro správu databázových migrací.

MySQLClient [16], PyMySQL [17] – Knihovny zajišťující komunikaci s MySQL serverem.
MySQLClient, vytvořený jako fork MySQLdb1 [18], využívá API systémové knihovny lib-
mysqlclient, která je napsaná v čistém C a díky tomu je v určitých případech i několikaná-
sobně rychlejší. Instalace knihovny ale může být problematická, neboť např. existuje balí-
ček default-libmysqlclient-dev pro Ubuntu 18.04LTS [19] a Debian 10 [20], ale v Alpine je
dostupná pouze alternativa mariadb-connector-c-dev [21]. Druhou variantou je PyMySQL,
která je napsána v čistém Pythonu, tedy nevyžaduje žádnou instalaci systémových balíčků,
nicméně použití čistého Pythonu má negativním vliv na rychlost.

PyMongo [22] – Oficiální balíček pro práci s NoSQL databází MongoDB.

Boto 3 [23], Minio [24] – Boto 3 je knihovna pro práci s AWS službami, konkrétně S3. MinIO
je open-source objektový storage, kompatibilní s S3, ke kterému byla vytvořena přidru-
žená knihovna Minio. Jedná se tedy o alternativu k Boto 3 zajišťující pouze funkcionalitu

31



dostupnou v MinIO serveru. Obě knihovny umožňují pracovat jak s AWS S3, tak s MinIO
serverem a mají podobnou deklaraci.

Flask [25] – Webový framework poskytující základní funkcionalitu webovému serveru. Vhodný
pro jednoduché API nebo s pomocí šablonovacího systému Jinja2 [26] k renderování HTML.
Mapování objektů, validace formulářů, nahrávání souborů je možné doinstalovat pomocí
rozšíření.

Gunicorn [27] – Gunicorn je WSGI HTTP server pro Unix-like operační systémy. Pomocí
správy workers procesů umožňuje zpracovávat více požadavků současně.

Luigi [28] – Knihovna vytvořená firmou Spotify, která se zabývá zpracováním komplexních
pipelines a dávkových úkolů.

tqdm [29] – Rychlý a rozšiřitelný progress bar používaný při práci v CLI prostředí.

pytest [30] – Framework pro psaní automatický testů. Ideální pro jednoduché unit testy.

Faker [31] – Balíček pro generování náhodných dat, vhodný pro použití např. v automatických
testech.

Memory Profiler [32] – Modul určený k monitorování spotřeby paměti. Při kombinaci s kni-
hovnou matplotlib je možné vizualizovat spotřebu paměti v časovém průběhu do grafu.

5.3 PHP

PHP [33] je populární skriptovací jazyk určený pro vývoj webových aplikací. Mezi nejznámější
frameworky patří Symfony, Laravel, a v česku Nette, vytvořený Davidem Grudlem. Styl kódu
je definován v PSR [34] doporučeních.

5.4 MySQL

MySQL [35] je open-source RDBMS. Současný majitel Oracle Corporation také nabízí v place-
ných edicích [36] rozšiřující funkce, např. replikaci a škálování v clusteru včetně podpory 24x7.
Poté co byla společnost odkoupena firmou Sun Microsystems (dnes již zvaná Oracle Corpo-
ration), byl vytvořen dodnes rozvíjený fork MariaDB [37]. MySQL využívají největší softwarové
společnosti provozující Facebook, Twitter, YouTube a další.

5.5 MongoDB

MongoDB [38] je dokumentově orientovaná databáze, klasifikovaná jako NoSQL. Pro práci s do-
kumenty využívá JSON objekty. MongoDB vyvíjí společnost MongoDB Inc. Dnes je velmi po-
pulární a používají ji společnosti Uber, Google, IBM a další.

32



5.6 Redis

Redis [39] je open-source in-memory úložiště datových struktur. Využívá se jako databáze, cache
nebo zprostředkovatel zpráv. Podporuje uložení řetězců, hashů, listů a spoustu dalších datových
struktur. Má vestavěnou replikaci, vysokou dostupnost a partitioning v clusteru.

5.7 MinIO

MinIO [40] je cloudové objektové úložiště kompatibilní s technologií Amazon S3. Implementuje
server, webového klienta a množství SDK pro jazyky Go, Java, JavaScript, Python, Haskell.
Využit je ve společnostech Apple, Boeing, Disney a dalších.

5.8 Git

Nejpopulárnějším nástrojem pro distribuci a verzování změn zdrojového kódu je Git [41]. Základ-
ními koncepčními prvky jsou větve, commity, merge commity a tagy. Všechna data se ukládají
do repozitářů a umožňují synchronizaci s repozitářem na serveru. Veřejnými Git repozitáři jsou
GitHub [42], GitLab [43] a BitBucket [44]. GitLab jako jediný umožňuje free cloud i on-premise
instalaci (provoz na vlastní infrastruktuře). Pokud je v jednom repozitáři sdruženo více projektů,
pak se takový repozitář nazývá monorepo. Pro práci s větvemi se doporučuje využívat GitFlow
[45] branching model. Git se používá pro verzovaní kódu Linuxového kernelu a ve společnostech
Facebook a Google.

5.9 GitLab CI/CD

GitLab CI/CD [46] je nástroj pro automatické navázání vývoje na testování (Continuos In-
tegration, Continuos Delivery) a nasazení (Continuos Deployment). Konfigurace se zapisuje
v YAML formátu do .gitlab-ci.yml souboru.

Pipelines – Rozdělení zpracování do jednotlivých úkolů (jobs) zařazených ve skupinách (stages),
které se za sebou řetězí (pipelines). Pokud dojde k chybě, další stage již nepokračuje.

Job artifacts – Job artifacts je jeden nebo více automaticky vygenerovaných souborů při zpra-
cování jobu. Tyto soubory se nahrají z GitLab Runner do GitLab rozhraní a jsou k dispozici
po omezenou dobu ke stažení. Používají se například pro code coverage report.

Schedule pipelines – Plánované úlohy spouštěné pravidelně v definovaném čase. Využívá se
často například pro nightly builds.

Pipelines for Merge Requests – Generování pipeline při vytvoření merge requestu. Umož-
ňuje také automatické vytvoření fork repozitáře, kde dojde k úspěšnému merge commitu
a pipeline se vygeneruje ze zdrojových kódů po merge requestu.

33



GitLab Runner – Worker pro zpracování GitLab CI/CD jobs. Podporuje současný běh více
jobs. Umožňuje instalaci na operační systémy GNU/Linux, macOS a Windows.

CI services – Pokud je běh některé služby závislý např. na databázi nebo objektovém úložišti,
je možné tyto služby linkovat a GitLab Runner automaticky před spuštěním definovaných
úkolů spustí tyto závislosti a také je odebere po dokončení.

5.10 Sentry

Sentry [47] je služba pro správu chybových událostí. Umožňuje běh v cloudu i on-premise insta-
laci. Ideální pro prioritizaci, přiřazování členů týmu k událostem, automatické seskupení opaku-
jících se událostí a snadné odkazování např. v GitLab.

5.11 Prometheus & Grafana

Prometheus [48] zpracovává metriky generované aplikacemi a umožňuje zasílat upozornění při pře-
kročení hodnot, např. diskové kapacity. Grafana [49] zajišťuje vizualizaci dat do grafů.

5.12 Docker

Docker [50] je sada služeb poskytující prostředí k zabalení a přenášení software. Jednotlivé ba-
líčky se nazývají kontejnery a jsou izolovány pomocí virtualizace na úrovni operačního systému.
Tím Docker poskytuje základ k automatizaci vývoje, testování a distribuce aplikací. Aktuálně
podporuje nativně platformu Linux, ale lze jej také používat i na macOS/Windows. Tyto ne-
nativní platformy využívají paravirtualizaci, který má ale negativní dopad na výkon běžících
aplikací. Do produkčního prostředí jsou vhodné pouze distribuce Dockeru pro Linuxové OS,
jako např. RHEL, SLES, Ubuntu a CentOS.

Hlavním balíčkem je Docker Engine, obsahující Docker daemon a poskytující nezbytné pro-
středí pro běh a správu kontejnerů. Ty se skládají z Docker kontejnerů a Docker images, rozdě-
lených do jednotlivých vrstev. Sestavení image probíhá ze souboru nazvaném Dockerfile. Docker
registry je repozitář pro ukládání Docker images. Mezi veřejné repozitáře patří např. Docker
hub [51], případně je možné provozovat privátní Docker registry.

Dalším nástrojem je Docker compose pro správu multi-kontejnerových aplikací, jejichž defi-
nice se zapisuje do YAML souborů, typicky nazvaných docker-compose.yml. Manipulace s kon-
tejnery probíhá přes docker-compose CLI rozhraní.

Docker Swarm je mód umožňují provoz a správu kontejnerů v clusteru. Ovládání probíhá
pomocí docker swarm CLI utility.

5.13 VMware vSphere

VMware vSphere [52] je sada nástrojů pro virtualizaci od společnosti VMware.

34



Základem je VMware ESXi [53] enterprise hypervisor, poskytující nástroje pro nasazení
a správu virtuální serverů. Virtualizace je poskytována přímo jako systémová služba, tedy je
označována jako nativní (typ 1). Využívá BusyBox shell a vlastní kernel založený na Linuxu. Dále
obsahuje webové rozhraní umožňující plnohodnotnou správu VM, jejich snapshotů a zobrazení
statistik vytížení procesoru, paměti, sítě a disku. Poskytován je i ve free verzi s omezením
na 8 vCPU pro každou VM.

Při integraci v clusteru s vCenter server [54] umožňuje provozovat službu vMotion, tedy
migraci VM mezi jednotlivými nodes (fyzickými servery) bez nutnosti restartu VM a s výpadkem
v řádu milisekund. Další funkcí je HA zajišťující automatický restart VM na jiném node v případě
HW chyby fyzického serveru. Díky těmto funkcím je vhodný pro nasazení do provozu pro náročné
aplikace v produkčním prostředí.

35



6 Závěr

Během řešení úkolů v rámci odborné praxe jsem využil především obecné teoretické znalosti
získané během studia VŠB. Převážně se jednalo o algoritmizaci, složitosti algoritmů, teoretické
informatiky, návrhové vzory, komunikačních technologií, SQL databází a samozřejmě programo-
vání.

Protože reálné aplikace jsou mnohem komplexnější než školní projekty, byly pro mě přínosem
cenné rady od zkušenějších kolegů.

Oproti obyčejnému studiu mi praxe přinesla spoustu praktických zkušeností, mezi které
patří například dělení rozsáhlých úkolů na menší dílčí části a jejich uvádění ihned do testovacího
provozu. Dále tvorba harmonogramu a plánování odhadů času implementace. Velmi přínosná
byla zkušenost s technologiemi, ke kterými jako student nepřijdu vůbec do styku. Také je v praxi
velice důležitá práce v týmu, vzájemná komunikace, dělení úkolů a zastupitelnost.

36



Literatura

1. ATLAS consulting spol. s r.o. [online] [cit. 2020-03-28]. Dostupné z: https://atlasconsulting.

cz/.

2. Hlídač ochranných známek – Mějte své ochranné známky pod kontrolou [online] [cit. 2020-
05-13]. Dostupné z: https://hlidacoz.cz/.

3. Novela zákona o ochranných známkách | Právní prostor [online] [cit. 2020-05-10]. Do-
stupné z: https://www.pravniprostor.cz/clanky/rekodifikace/novela- zakona-

o-ochrannych-znamkach.

4. Export Opendata IPOCZ Trademark [online] [cit. 2020-05-14]. Dostupné z: https://isdv.

upv.cz/webapp/webapp.opendata.tm.

5. Open Data - EUIPO - Europa [online] [cit. 2020-05-14]. Dostupné z: https://euipo.

europa.eu/ohimportal/en/open-data.

6. Hlídač ochranných známek, ATLAS consulting spol. s r.o. [online] [cit. 2020-04-14]. Do-
stupné z: https://hlidacoz.atlasconsulting.cz/.

7. Storing Images in DB - Yea or Nay? - Stack Overflow [online] [cit. 2020-05-13]. Dostupné
z: https://stackoverflow.com/a/22804.

8. Welcome to Python.org [online] [cit. 2020-04-13]. Dostupné z: https://www.python.org/.

9. PyPI · The Python Package Index [online] [cit. 2020-04-13]. Dostupné z: https://pypi.

org/.

10. PEP 8 – Style Guide for Python Code | Python.org [online] [cit. 2020-04-13]. Dostupné z:
https://www.python.org/dev/peps/pep-0008/.

11. pip - The Python Package Installer — pip 20.0.2 documentation [online] [cit. 2020-04-13].
Dostupné z: https://pip.pypa.io/en/stable/.

12. Home | Yarn - Package Manager [online] [cit. 2020-04-13]. Dostupné z: https://yarnpkg.

com/.

13. Composer [online] [cit. 2020-04-13]. Dostupné z: https://getcomposer.org/.

14. SQLAlchemy - The Database Toolkit for Python [online] [cit. 2020-04-13]. Dostupné z:
https://www.sqlalchemy.org/.

15. Alembic - SQLAlchemy [online] [cit. 2020-04-13]. Dostupné z: https://alembic.sqlalchemy.

org/en/latest/.

16. PyMySQL/mysqlclient-python: MySQL database ... - GitHub [online] [cit. 2020-04-13]. Do-
stupné z: https://github.com/PyMySQL/mysqlclient-python.

17. PyMySQL/PyMySQL: Pure Python MySQL Client - GitHub [online] [cit. 2020-04-13]. Do-
stupné z: https://github.com/PyMySQL/PyMySQL.

37

https://atlasconsulting.cz/
https://atlasconsulting.cz/
https://hlidacoz.cz/
https://www.pravniprostor.cz/clanky/rekodifikace/novela-zakona-o-ochrannych-znamkach
https://www.pravniprostor.cz/clanky/rekodifikace/novela-zakona-o-ochrannych-znamkach
https://isdv.upv.cz/webapp/webapp.opendata.tm
https://isdv.upv.cz/webapp/webapp.opendata.tm
https://euipo.europa.eu/ohimportal/en/open-data
https://euipo.europa.eu/ohimportal/en/open-data
https://hlidacoz.atlasconsulting.cz/
https://stackoverflow.com/a/22804
https://www.python.org/
https://pypi.org/
https://pypi.org/
https://www.python.org/dev/peps/pep-0008/
https://pip.pypa.io/en/stable/
https://yarnpkg.com/
https://yarnpkg.com/
https://getcomposer.org/
https://www.sqlalchemy.org/
https://alembic.sqlalchemy.org/en/latest/
https://alembic.sqlalchemy.org/en/latest/
https://github.com/PyMySQL/mysqlclient-python
https://github.com/PyMySQL/PyMySQL


18. farcepest/MySQLdb1: MySQL database connector for ... - GitHub [online] [cit. 2020-04-13].
Dostupné z: https://github.com/farcepest/MySQLdb1.

19. Ubuntu – Details of package default-libmysqlclient-dev in bionic [online] [cit. 2020-04-13].
Dostupné z: https://packages.ubuntu.com/bionic/default-libmysqlclient-dev.

20. Debian – Details of package default-libmysqlclient-dev in buster [online] [cit. 2020-04-13].
Dostupné z: https://packages.debian.org/buster/default-libmysqlclient-dev.

21. mariadb-connector-c-dev - Alpine Linux packages [online] [cit. 2020-04-13]. Dostupné z:
https://pkgs.alpinelinux.org/package/edge/main/x86/mariadb-connector-c-dev.

22. PyMongo - MongoDB API [online] [cit. 2020-04-13]. Dostupné z: https://api.mongodb.

com/python/current/.

23. Boto 3 Documentation — Boto 3 Docs 1.12.39 documentation [online] [cit. 2020-04-13].
Dostupné z: https://boto3.amazonaws.com/v1/documentation/api/latest/index.

html.

24. Python Client API Reference - MinIO [online] [cit. 2020-04-13]. Dostupné z: https://

docs.min.io/docs/python-client-api-reference.html.

25. Welcome to Flask — Flask Documentation (1.1.x) [online] [cit. 2020-04-13]. Dostupné z:
https://flask.palletsprojects.com/en/1.1.x/.

26. Jinja — Jinja Documentation (2.11.x) [online] [cit. 2020-04-13]. Dostupné z: https://

jinja.palletsprojects.com/en/2.11.x/.

27. Gunicorn - Python WSGI HTTP Server for UNIX [online] [cit. 2020-04-13]. Dostupné z:
https://gunicorn.org/.

28. spotify/luigi: Luigi is a Python module that helps you ... - GitHub [online] [cit. 2020-04-13].
Dostupné z: https://github.com/spotify/luigi.

29. tqdm/tqdm: A Fast, Extensible Progress Bar for ... - GitHub [online] [cit. 2020-04-13].
Dostupné z: https://github.com/tqdm/tqdm.

30. pytest: helps you write better programs — pytest documentation [online] [cit. 2020-04-13].
Dostupné z: https://docs.pytest.org/en/latest/.

31. Welcome to Faker’s documentation! — Faker 4.0.2 ... [online] [cit. 2020-04-13]. Dostupné
z: https://faker.readthedocs.io/en/master/.

32. pythonprofilers/memory_profiler: Monitor Memory ... - GitHub [online] [cit. 2020-04-13].
Dostupné z: https://github.com/pythonprofilers/memory_profiler.

33. PHP.net [online] [cit. 2020-04-13]. Dostupné z: https://www.php.net/.

34. PHP Standards Recommendations - PHP-FIG [online] [cit. 2020-04-13]. Dostupné z: https:

//www.php-fig.org/psr/.

35. MySQL [online] [cit. 2020-04-13]. Dostupné z: https://www.mysql.com/.

38

https://github.com/farcepest/MySQLdb1
https://packages.ubuntu.com/bionic/default-libmysqlclient-dev
https://packages.debian.org/buster/default-libmysqlclient-dev
https://pkgs.alpinelinux.org/package/edge/main/x86/mariadb-connector-c-dev
https://api.mongodb.com/python/current/
https://api.mongodb.com/python/current/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.min.io/docs/python-client-api-reference.html
https://docs.min.io/docs/python-client-api-reference.html
https://flask.palletsprojects.com/en/1.1.x/
https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/
https://gunicorn.org/
https://github.com/spotify/luigi
https://github.com/tqdm/tqdm
https://docs.pytest.org/en/latest/
https://faker.readthedocs.io/en/master/
https://github.com/pythonprofilers/memory_profiler
https://www.php.net/
https://www.php-fig.org/psr/
https://www.php-fig.org/psr/
https://www.mysql.com/


36. MySQL Editions - MySQL [online] [cit. 2020-04-13]. Dostupné z: https://www.mysql.

com/products/.

37. MariaDB Foundation - MariaDB.org [online] [cit. 2020-04-13]. Dostupné z: https : / /

mariadb.org/.

38. MongoDB: The most popular database for modern apps [online] [cit. 2020-04-13]. Dostupné
z: https://www.mongodb.com/.

39. Redis [online] [cit. 2020-05-15]. Dostupné z: https://redis.io/.

40. MinIO | High Performance, Kubernetes-Friendly Object Storage [online] [cit. 2020-04-13].
Dostupné z: https://min.io/.

41. Git SCM [online] [cit. 2020-04-13]. Dostupné z: https://git-scm.com/.

42. The world’s leading software development platform · GitHub [online] [cit. 2020-04-13]. Do-
stupné z: https://github.com/.

43. GitLab [online] [cit. 2020-04-13]. Dostupné z: https://about.gitlab.com/.

44. Bitbucket | The Git solution for professional teams [online] [cit. 2020-04-13]. Dostupné z:
https://bitbucket.org/product.

45. Introducing GitFlow [online] [cit. 2020-04-13]. Dostupné z: https://datasift.github.

io/gitflow/IntroducingGitFlow.html.

46. GitLab CI/CD - GitLab Documentation [online] [cit. 2020-04-13]. Dostupné z: https :

//docs.gitlab.com/ee/ci/.

47. Sentry: Application Monitoring and Error Tracking Software [online] [cit. 2020-04-13]. Do-
stupné z: https://sentry.io/welcome/.

48. Prometheus - Monitoring system & time series database [online] [cit. 2020-04-13]. Dostupné
z: https://prometheus.io/.

49. Grafana: The open observability platform | Grafana Labs [online] [cit. 2020-04-13]. Dostupné
z: https://grafana.com/.

50. Docker: Empowering App Development for Developers [online] [cit. 2020-04-13]. Dostupné
z: https://www.docker.com/.

51. Docker Hub [online] [cit. 2020-04-13]. Dostupné z: https://hub.docker.com/.

52. What is vSphere? | Server Virtualization Software | VMware | CZ [online] [cit. 2020-04-13].
Dostupné z: https://www.vmware.com/cz/products/vsphere.html.

53. ESXi | Bare Metal Hypervisor | VMware | CZ [online] [cit. 2020-04-13]. Dostupné z: https:

//www.vmware.com/cz/products/esxi-and-esx.html.

54. Server Management Software - vCenter Server | VMware | CZ [online] [cit. 2020-04-13].
Dostupné z: https://www.vmware.com/cz/products/vcenter-server.html.

39

https://www.mysql.com/products/
https://www.mysql.com/products/
https://mariadb.org/
https://mariadb.org/
https://www.mongodb.com/
https://redis.io/
https://min.io/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/product
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://sentry.io/welcome/
https://prometheus.io/
https://grafana.com/
https://www.docker.com/
https://hub.docker.com/
https://www.vmware.com/cz/products/vsphere.html
https://www.vmware.com/cz/products/esxi-and-esx.html
https://www.vmware.com/cz/products/esxi-and-esx.html
https://www.vmware.com/cz/products/vcenter-server.html


A Architektura a procesy

Obrázek 8: Proces denní aktualizace dat

40



O
br

áz
ek

9:
Sc

hé
m

a
ar

ch
ite

kt
ur

y
ap

lik
ac

e

41



B Kontejnerizace

FROM python:3.8-alpine

RUN apk update && apk add --no-cache gcc mariadb-connector-c-dev musl-dev

imagemagick libmagic

WORKDIR /app

COPY core/requirements.txt /app/core/

COPY ipocz_parser/requirements.txt /app/ipocz_parser/

RUN pip install --no-cache-dir -r core/requirements.txt -r ipocz_parser/

requirements.txt

COPY core /app/core

COPY ipocz_parser /app/ipocz_parser

CMD ["python", "-m", "ipocz_parser.app"]

Výpis 3: Příklad sestavení kontejneru pro službu IPOCZ parser

42


	Seznam použitých zkratek a symbolů
	Seznam obrázků
	Seznam tabulek
	Seznam výpisů zdrojového kódu
	Úvod
	Společnost ATLAS consulting spol. s r.o.
	Pracovní zařazení

	Produkt HLÍDAČ OCHRANNÝCH ZNÁMEK
	Právní důvod
	Datové zdroje
	Funkce

	Pracovní náplň
	Porada se soudním znalcem v oboru OZ
	Nepovedený návrh
	Hlídání front známek
	Zpracování dat z EUIPO
	Neplatná instrukce
	Miniatury
	Problémy s obrázky v databázi
	Migrace obrázků do S3
	Statistiky dat
	Vize

	Použité technologie
	Python
	PyPI
	PHP
	MySQL
	MongoDB
	Redis
	MinIO
	Git
	GitLab CI/CD
	Sentry
	Prometheus & Grafana
	Docker
	VMware vSphere

	Závěr
	Literatura
	Přílohy
	Architektura a procesy
	Kontejnerizace

